

Engineering and Physical Sciences Research Council

SAFFS: Sustainable acrylic fabrics from seaweed

Jonathan Todd, Ash Norcott & Christopher Hamilton, University of East Anglia, and Schalk de Beer, Central Pharma Biotechnica Ltd.

University of East Anglia

Summary

This project builds on previous internal funding and our idea to use fermentation and renewable seaweed feedstock to produce bio-based acrylic acid - a platform chemical used in e.g. textiles, super-absorbents, paints and adhesives.

Aims

- Engineer bacteria to convert seaweed extract to acrylic acid via aerobic fermentation.
- Overcome yield and cost limitations of other bio-acrylic acid synthesis methods.
- Obtain an optimised seaweed fermentation method to yield acrylic acid on a small-scale.
- Investigate purification of acrylic acid from complex seaweed extract.

Outcomes

- Developed an efficient method to extract our substrate from seaweeds.
- Engineered a model bacterial strain to produce and export acrylic acid.
- Developed a scalable method for processing aqueous seaweed extract via fermentation to yield acrylic acid at 95% efficiency.

"BBNet funding enabled us to develop a scalable method for bioacrylate production from seaweed waste – described by industry as the holy grail for this platform chemical" Professor Jonathan Todd University of East Anglia

This proof-of-concept project was awarded by the Biomass Biorefinery Network and funded by BBSRC. For more information visit bbnet-nibb.co.uk.